
    e!h*p                         d Z dgZddlZddlmZ ddlmZmZm	Z	 ddl
mZmZ ddlmZ dd	lmZ g d
Z	 	 ddZd Z	 	 	 ddZ	 	 	 	 	 ddZd Zd Zd Zd Zd Zd Zd Zy)zp
Unified interfaces to root finding algorithms.

Functions
---------
- root : find a root of a vector function.
root    N)warn   )
MemoizeJacOptimizeResult_check_unknown_options)
_root_hybrleastsq)_root_df_sane)_nonlin)
hybrlmbroyden1broyden2andersonlinearmixingdiagbroydenexcitingmixingkrylovdf-sanec                    
 
 fd
d
_         t        |t              s|f}|j                         }|i }||dv rt	        d| dt
        d       t        |      s)|dv r%t        |      rt                 j                  }nd}|t        |      }|dv r|j                  d	|       n|d
v r|j                  d|       nv|dv rr|j                  d	|       |j                  dt        j                         |j                  dt        j                         |j                  dt        j                         |dk(  rt        
|f||d|}	ni|dk(  rt        
|f||d|}	nS|dk(  rt!        ||       t#        
|f||d|}	n1|dv rt!        ||       t%        
|f||||d|}	nt'        d|       
j                   |	_         |	S )a  
    Find a root of a vector function.

    Parameters
    ----------
    fun : callable
        A vector function to find a root of.

        Suppose the callable has signature ``f0(x, *my_args, **my_kwargs)``, where
        ``my_args`` and ``my_kwargs`` are required positional and keyword arguments.
        Rather than passing ``f0`` as the callable, wrap it to accept
        only ``x``; e.g., pass ``fun=lambda x: f0(x, *my_args, **my_kwargs)`` as the
        callable, where ``my_args`` (tuple) and ``my_kwargs`` (dict) have been
        gathered before invoking this function.
    x0 : ndarray
        Initial guess.
    args : tuple, optional
        Extra arguments passed to the objective function and its Jacobian.
    method : str, optional
        Type of solver. Should be one of

        - 'hybr'             :ref:`(see here) <optimize.root-hybr>`
        - 'lm'               :ref:`(see here) <optimize.root-lm>`
        - 'broyden1'         :ref:`(see here) <optimize.root-broyden1>`
        - 'broyden2'         :ref:`(see here) <optimize.root-broyden2>`
        - 'anderson'         :ref:`(see here) <optimize.root-anderson>`
        - 'linearmixing'     :ref:`(see here) <optimize.root-linearmixing>`
        - 'diagbroyden'      :ref:`(see here) <optimize.root-diagbroyden>`
        - 'excitingmixing'   :ref:`(see here) <optimize.root-excitingmixing>`
        - 'krylov'           :ref:`(see here) <optimize.root-krylov>`
        - 'df-sane'          :ref:`(see here) <optimize.root-dfsane>`

    jac : bool or callable, optional
        If `jac` is a Boolean and is True, `fun` is assumed to return the
        value of Jacobian along with the objective function. If False, the
        Jacobian will be estimated numerically.
        `jac` can also be a callable returning the Jacobian of `fun`. In
        this case, it must accept the same arguments as `fun`.
    tol : float, optional
        Tolerance for termination. For detailed control, use solver-specific
        options.
    callback : function, optional
        Optional callback function. It is called on every iteration as
        ``callback(x, f)`` where `x` is the current solution and `f`
        the corresponding residual. For all methods but 'hybr' and 'lm'.
    options : dict, optional
        A dictionary of solver options. E.g., `xtol` or `maxiter`, see
        :obj:`show_options()` for details.

    Returns
    -------
    sol : OptimizeResult
        The solution represented as a ``OptimizeResult`` object.
        Important attributes are: ``x`` the solution array, ``success`` a
        Boolean flag indicating if the algorithm exited successfully and
        ``message`` which describes the cause of the termination. See
        `OptimizeResult` for a description of other attributes.

    See also
    --------
    show_options : Additional options accepted by the solvers

    Notes
    -----
    This section describes the available solvers that can be selected by the
    'method' parameter. The default method is *hybr*.

    Method *hybr* uses a modification of the Powell hybrid method as
    implemented in MINPACK [1]_.

    Method *lm* solves the system of nonlinear equations in a least squares
    sense using a modification of the Levenberg-Marquardt algorithm as
    implemented in MINPACK [1]_.

    Method *df-sane* is a derivative-free spectral method. [3]_

    Methods *broyden1*, *broyden2*, *anderson*, *linearmixing*,
    *diagbroyden*, *excitingmixing*, *krylov* are inexact Newton methods,
    with backtracking or full line searches [2]_. Each method corresponds
    to a particular Jacobian approximations.

    - Method *broyden1* uses Broyden's first Jacobian approximation, it is
      known as Broyden's good method.
    - Method *broyden2* uses Broyden's second Jacobian approximation, it
      is known as Broyden's bad method.
    - Method *anderson* uses (extended) Anderson mixing.
    - Method *Krylov* uses Krylov approximation for inverse Jacobian. It
      is suitable for large-scale problem.
    - Method *diagbroyden* uses diagonal Broyden Jacobian approximation.
    - Method *linearmixing* uses a scalar Jacobian approximation.
    - Method *excitingmixing* uses a tuned diagonal Jacobian
      approximation.

    .. warning::

        The algorithms implemented for methods *diagbroyden*,
        *linearmixing* and *excitingmixing* may be useful for specific
        problems, but whether they will work may depend strongly on the
        problem.

    .. versionadded:: 0.11.0

    References
    ----------
    .. [1] More, Jorge J., Burton S. Garbow, and Kenneth E. Hillstrom.
       1980. User Guide for MINPACK-1.
    .. [2] C. T. Kelley. 1995. Iterative Methods for Linear and Nonlinear
       Equations. Society for Industrial and Applied Mathematics.
       <https://archive.siam.org/books/kelley/fr16/>
    .. [3] W. La Cruz, J.M. Martinez, M. Raydan. Math. Comp. 75, 1429 (2006).

    Examples
    --------
    The following functions define a system of nonlinear equations and its
    jacobian.

    >>> import numpy as np
    >>> def fun(x):
    ...     return [x[0]  + 0.5 * (x[0] - x[1])**3 - 1.0,
    ...             0.5 * (x[1] - x[0])**3 + x[1]]

    >>> def jac(x):
    ...     return np.array([[1 + 1.5 * (x[0] - x[1])**2,
    ...                       -1.5 * (x[0] - x[1])**2],
    ...                      [-1.5 * (x[1] - x[0])**2,
    ...                       1 + 1.5 * (x[1] - x[0])**2]])

    A solution can be obtained as follows.

    >>> from scipy import optimize
    >>> sol = optimize.root(fun, [0, 0], jac=jac, method='hybr')
    >>> sol.x
    array([ 0.8411639,  0.1588361])

    **Large problem**

    Suppose that we needed to solve the following integrodifferential
    equation on the square :math:`[0,1]\times[0,1]`:

    .. math::

       \nabla^2 P = 10 \left(\int_0^1\int_0^1\cosh(P)\,dx\,dy\right)^2

    with :math:`P(x,1) = 1` and :math:`P=0` elsewhere on the boundary of
    the square.

    The solution can be found using the ``method='krylov'`` solver:

    >>> from scipy import optimize
    >>> # parameters
    >>> nx, ny = 75, 75
    >>> hx, hy = 1./(nx-1), 1./(ny-1)

    >>> P_left, P_right = 0, 0
    >>> P_top, P_bottom = 1, 0

    >>> def residual(P):
    ...    d2x = np.zeros_like(P)
    ...    d2y = np.zeros_like(P)
    ...
    ...    d2x[1:-1] = (P[2:]   - 2*P[1:-1] + P[:-2]) / hx/hx
    ...    d2x[0]    = (P[1]    - 2*P[0]    + P_left)/hx/hx
    ...    d2x[-1]   = (P_right - 2*P[-1]   + P[-2])/hx/hx
    ...
    ...    d2y[:,1:-1] = (P[:,2:] - 2*P[:,1:-1] + P[:,:-2])/hy/hy
    ...    d2y[:,0]    = (P[:,1]  - 2*P[:,0]    + P_bottom)/hy/hy
    ...    d2y[:,-1]   = (P_top   - 2*P[:,-1]   + P[:,-2])/hy/hy
    ...
    ...    return d2x + d2y - 10*np.cosh(P).mean()**2

    >>> guess = np.zeros((nx, ny), float)
    >>> sol = optimize.root(residual, guess, method='krylov')
    >>> print('Residual: %g' % abs(residual(sol.x)).max())
    Residual: 5.7972e-06  # may vary

    >>> import matplotlib.pyplot as plt
    >>> x, y = np.mgrid[0:1:(nx*1j), 0:1:(ny*1j)]
    >>> plt.pcolormesh(x, y, sol.x, shading='gouraud')
    >>> plt.colorbar()
    >>> plt.show()

    c                  8    xj                   dz  c_          |  S zc
        Wrapped `func` to track the number of times
        the function has been called.
        r   )nfev)fargs_wrapped_funfuns    \/var/www/html/diagnosisapp-backend/venv/lib/python3.12/site-packages/scipy/optimize/_root.pyr   zroot.<locals>._wrapped_fun   s     
 	QE{    r   N)r   r   Method z does not accept callback.   
stacklevelxtol)r   ftolr   r   r   r   r   r   r   xatolfatolr   )argsjacr   r   )r)   callback)r)   r*   _method	_callbackzUnknown solver )r   
isinstancetuplelowerr   RuntimeWarningcallableboolr   
derivativedict
setdefaultnpinfr	   _root_leastsq_warn_jac_unusedr   _root_nonlin_solve
ValueError)r   x0r)   methodr*   tolr+   optionsmethsolr   s   `         @r   r   r      s   p LdE"w<<>D 6wvh89	+ C=T^39S/C..CC w->!vs+\!vs+ A Avs+w/vrvv.w/v~rI#II	L"L4SLGL		f%L" '4( '%'	 = 
=f% r ,#)-,#*, ?6(344  CHJr   c                 6    | t        d| dt        d       y y )Nr    z! does not use the jacobian (jac).r!   r"   )r   r1   )r*   r>   s     r   r:   r:     s%    
wvh?@	+ r   c                      d fd}t        |       t        ||||d||||||	|
|      \  }}}}}t        ||||dv ||j                  d      d      }|j	                  |       |_        |S )	a  
    Solve for least squares with Levenberg-Marquardt

    Options
    -------
    col_deriv : bool
        non-zero to specify that the Jacobian function computes derivatives
        down the columns (faster, because there is no transpose operation).
    ftol : float
        Relative error desired in the sum of squares.
    xtol : float
        Relative error desired in the approximate solution.
    gtol : float
        Orthogonality desired between the function vector and the columns
        of the Jacobian.
    maxiter : int
        The maximum number of calls to the function. If zero, then
        100*(N+1) is the maximum where N is the number of elements in x0.
    eps : float
        A suitable step length for the forward-difference approximation of
        the Jacobian (for Dfun=None). If `eps` is less than the machine
        precision, it is assumed that the relative errors in the functions
        are of the order of the machine precision.
    factor : float
        A parameter determining the initial step bound
        (``factor * || diag * x||``). Should be in interval ``(0.1, 100)``.
    diag : sequence
        N positive entries that serve as a scale factors for the variables.
    r   c                      dz   |  S r    )r   r   r   s    r   r   z#_root_leastsq.<locals>._wrapped_fun9  s     		E{r   T)r)   Dfunfull_output	col_derivr$   r%   gtolmaxfevepsfcnfactordiag)r   r!         fvecr   )xmessagestatussuccesscov_xr   r>   )r   r
   r   popupdater   )r   r=   r)   r*   rI   r$   r%   rJ   maxiterepsrM   rN   unknown_optionsr   rR   rV   infomsgierrB   r   s   `                   @r   r9   r9     s    B D ?+&|Rd,/T1:,0t.5c.44 AAudC 1c#!$!4E!XXf-d<C JJtCHJr   c                     t        |       |
}|	}|}|}|}|
t               }t        j                  t        j                  t        j
                  t        j                  t        j                  t        j                  t        j                  d|   }r|du r fd}n	 fd}n }t        j                  || |di |||||||||||dd      \  }}t        ||      }|j                  |       |S )	Nr&   Tc                      | g d   S )Nr   rF   rR   r)   r   s    r   fz_root_nonlin_solve.<locals>.fl  s    1}t}Q''r   c                      | g S )NrF   ra   s    r   rb   z_root_nonlin_solve.<locals>.fo  s    1}t}$r   F)jacobianiterverboserY   f_tolf_rtolx_tolx_rtoltol_normline_searchr+   rH   raise_exception)rR   r>   rF   )r   r5   nonlinBroydenFirstBroydenSecondAndersonLinearMixingDiagBroydenExcitingMixingKrylovJacobiannonlin_solver   rX   )r   r=   r)   r*   r-   r,   nitdisprY   r%   r(   r$   r'   rk   rl   jac_optionsr[   rg   rh   ri   rj   rf   rd   rb   rR   r\   rB   s   ` `                        r   r;   r;   Q  s     ?+EFEFGf"//"00"OO & 3 3%11"("7"7 // H $;(% !!!R(2I[2I'*G*1)/u)/(.9+4$279GAt 1W
-CJJtJr   c                       y)a
  
    Options
    -------
    nit : int, optional
        Number of iterations to make. If omitted (default), make as many
        as required to meet tolerances.
    disp : bool, optional
        Print status to stdout on every iteration.
    maxiter : int, optional
        Maximum number of iterations to make.
    ftol : float, optional
        Relative tolerance for the residual. If omitted, not used.
    fatol : float, optional
        Absolute tolerance (in max-norm) for the residual.
        If omitted, default is 6e-6.
    xtol : float, optional
        Relative minimum step size. If omitted, not used.
    xatol : float, optional
        Absolute minimum step size, as determined from the Jacobian
        approximation. If the step size is smaller than this, optimization
        is terminated as successful. If omitted, not used.
    tol_norm : function(vector) -> scalar, optional
        Norm to use in convergence check. Default is the maximum norm.
    line_search : {None, 'armijo' (default), 'wolfe'}, optional
        Which type of a line search to use to determine the step size in
        the direction given by the Jacobian approximation. Defaults to
        'armijo'.
    jac_options : dict, optional
        Options for the respective Jacobian approximation.

        alpha : float, optional
            Initial guess for the Jacobian is (-1/alpha).
        reduction_method : str or tuple, optional
            Method used in ensuring that the rank of the Broyden
            matrix stays low. Can either be a string giving the
            name of the method, or a tuple of the form ``(method,
            param1, param2, ...)`` that gives the name of the
            method and values for additional parameters.

            Methods available:

            - ``restart``: drop all matrix columns. Has no extra parameters.
            - ``simple``: drop oldest matrix column. Has no extra parameters.
            - ``svd``: keep only the most significant SVD components.
              Takes an extra parameter, ``to_retain``, which determines the
              number of SVD components to retain when rank reduction is done.
              Default is ``max_rank - 2``.

        max_rank : int, optional
            Maximum rank for the Broyden matrix.
            Default is infinity (i.e., no rank reduction).

    Examples
    --------
    >>> def func(x):
    ...     return np.cos(x) + x[::-1] - [1, 2, 3, 4]
    ...
    >>> from scipy import optimize
    >>> res = optimize.root(func, [1, 1, 1, 1], method='broyden1', tol=1e-14)
    >>> x = res.x
    >>> x
    array([4.04674914, 3.91158389, 2.71791677, 1.61756251])
    >>> np.cos(x) + x[::-1]
    array([1., 2., 3., 4.])

    NrF   rF   r   r   _root_broyden1_docr{     s    F 	r   c                       y)a'	  
    Options
    -------
    nit : int, optional
        Number of iterations to make. If omitted (default), make as many
        as required to meet tolerances.
    disp : bool, optional
        Print status to stdout on every iteration.
    maxiter : int, optional
        Maximum number of iterations to make.
    ftol : float, optional
        Relative tolerance for the residual. If omitted, not used.
    fatol : float, optional
        Absolute tolerance (in max-norm) for the residual.
        If omitted, default is 6e-6.
    xtol : float, optional
        Relative minimum step size. If omitted, not used.
    xatol : float, optional
        Absolute minimum step size, as determined from the Jacobian
        approximation. If the step size is smaller than this, optimization
        is terminated as successful. If omitted, not used.
    tol_norm : function(vector) -> scalar, optional
        Norm to use in convergence check. Default is the maximum norm.
    line_search : {None, 'armijo' (default), 'wolfe'}, optional
        Which type of a line search to use to determine the step size in
        the direction given by the Jacobian approximation. Defaults to
        'armijo'.
    jac_options : dict, optional
        Options for the respective Jacobian approximation.

        alpha : float, optional
            Initial guess for the Jacobian is (-1/alpha).
        reduction_method : str or tuple, optional
            Method used in ensuring that the rank of the Broyden
            matrix stays low. Can either be a string giving the
            name of the method, or a tuple of the form ``(method,
            param1, param2, ...)`` that gives the name of the
            method and values for additional parameters.

            Methods available:

            - ``restart``: drop all matrix columns. Has no extra parameters.
            - ``simple``: drop oldest matrix column. Has no extra parameters.
            - ``svd``: keep only the most significant SVD components.
              Takes an extra parameter, ``to_retain``, which determines the
              number of SVD components to retain when rank reduction is done.
              Default is ``max_rank - 2``.

        max_rank : int, optional
            Maximum rank for the Broyden matrix.
            Default is infinity (i.e., no rank reduction).
    NrF   rF   r   r   _root_broyden2_docr}     s    j 	r   c                       y)a_  
    Options
    -------
    nit : int, optional
        Number of iterations to make. If omitted (default), make as many
        as required to meet tolerances.
    disp : bool, optional
        Print status to stdout on every iteration.
    maxiter : int, optional
        Maximum number of iterations to make.
    ftol : float, optional
        Relative tolerance for the residual. If omitted, not used.
    fatol : float, optional
        Absolute tolerance (in max-norm) for the residual.
        If omitted, default is 6e-6.
    xtol : float, optional
        Relative minimum step size. If omitted, not used.
    xatol : float, optional
        Absolute minimum step size, as determined from the Jacobian
        approximation. If the step size is smaller than this, optimization
        is terminated as successful. If omitted, not used.
    tol_norm : function(vector) -> scalar, optional
        Norm to use in convergence check. Default is the maximum norm.
    line_search : {None, 'armijo' (default), 'wolfe'}, optional
        Which type of a line search to use to determine the step size in
        the direction given by the Jacobian approximation. Defaults to
        'armijo'.
    jac_options : dict, optional
        Options for the respective Jacobian approximation.

        alpha : float, optional
            Initial guess for the Jacobian is (-1/alpha).
        M : float, optional
            Number of previous vectors to retain. Defaults to 5.
        w0 : float, optional
            Regularization parameter for numerical stability.
            Compared to unity, good values of the order of 0.01.
    NrF   rF   r   r   _root_anderson_docr     s    N 	r   c                       yaf  
    Options
    -------
    nit : int, optional
        Number of iterations to make. If omitted (default), make as many
        as required to meet tolerances.
    disp : bool, optional
        Print status to stdout on every iteration.
    maxiter : int, optional
        Maximum number of iterations to make.
    ftol : float, optional
        Relative tolerance for the residual. If omitted, not used.
    fatol : float, optional
        Absolute tolerance (in max-norm) for the residual.
        If omitted, default is 6e-6.
    xtol : float, optional
        Relative minimum step size. If omitted, not used.
    xatol : float, optional
        Absolute minimum step size, as determined from the Jacobian
        approximation. If the step size is smaller than this, optimization
        is terminated as successful. If omitted, not used.
    tol_norm : function(vector) -> scalar, optional
        Norm to use in convergence check. Default is the maximum norm.
    line_search : {None, 'armijo' (default), 'wolfe'}, optional
        Which type of a line search to use to determine the step size in
        the direction given by the Jacobian approximation. Defaults to
        'armijo'.
    jac_options : dict, optional
        Options for the respective Jacobian approximation.

        alpha : float, optional
            initial guess for the jacobian is (-1/alpha).
    NrF   rF   r   r   _root_linearmixing_docr   '      D 	r   c                       yr   rF   rF   r   r   _root_diagbroyden_docr   K  r   r   c                       y)a  
    Options
    -------
    nit : int, optional
        Number of iterations to make. If omitted (default), make as many
        as required to meet tolerances.
    disp : bool, optional
        Print status to stdout on every iteration.
    maxiter : int, optional
        Maximum number of iterations to make.
    ftol : float, optional
        Relative tolerance for the residual. If omitted, not used.
    fatol : float, optional
        Absolute tolerance (in max-norm) for the residual.
        If omitted, default is 6e-6.
    xtol : float, optional
        Relative minimum step size. If omitted, not used.
    xatol : float, optional
        Absolute minimum step size, as determined from the Jacobian
        approximation. If the step size is smaller than this, optimization
        is terminated as successful. If omitted, not used.
    tol_norm : function(vector) -> scalar, optional
        Norm to use in convergence check. Default is the maximum norm.
    line_search : {None, 'armijo' (default), 'wolfe'}, optional
        Which type of a line search to use to determine the step size in
        the direction given by the Jacobian approximation. Defaults to
        'armijo'.
    jac_options : dict, optional
        Options for the respective Jacobian approximation.

        alpha : float, optional
            Initial Jacobian approximation is (-1/alpha).
        alphamax : float, optional
            The entries of the diagonal Jacobian are kept in the range
            ``[alpha, alphamax]``.
    NrF   rF   r   r   _root_excitingmixing_docr   o  s    J 	r   c                       y)aT  
    Options
    -------
    nit : int, optional
        Number of iterations to make. If omitted (default), make as many
        as required to meet tolerances.
    disp : bool, optional
        Print status to stdout on every iteration.
    maxiter : int, optional
        Maximum number of iterations to make.
    ftol : float, optional
        Relative tolerance for the residual. If omitted, not used.
    fatol : float, optional
        Absolute tolerance (in max-norm) for the residual.
        If omitted, default is 6e-6.
    xtol : float, optional
        Relative minimum step size. If omitted, not used.
    xatol : float, optional
        Absolute minimum step size, as determined from the Jacobian
        approximation. If the step size is smaller than this, optimization
        is terminated as successful. If omitted, not used.
    tol_norm : function(vector) -> scalar, optional
        Norm to use in convergence check. Default is the maximum norm.
    line_search : {None, 'armijo' (default), 'wolfe'}, optional
        Which type of a line search to use to determine the step size in
        the direction given by the Jacobian approximation. Defaults to
        'armijo'.
    jac_options : dict, optional
        Options for the respective Jacobian approximation.

        rdiff : float, optional
            Relative step size to use in numerical differentiation.
        method : str or callable, optional
            Krylov method to use to approximate the Jacobian.  Can be a string,
            or a function implementing the same interface as the iterative
            solvers in `scipy.sparse.linalg`. If a string, needs to be one of:
            ``'lgmres'``, ``'gmres'``, ``'bicgstab'``, ``'cgs'``, ``'minres'``,
            ``'tfqmr'``.

            The default is `scipy.sparse.linalg.lgmres`.
        inner_M : LinearOperator or InverseJacobian
            Preconditioner for the inner Krylov iteration.
            Note that you can use also inverse Jacobians as (adaptive)
            preconditioners. For example,

            >>> jac = BroydenFirst()
            >>> kjac = KrylovJacobian(inner_M=jac.inverse).

            If the preconditioner has a method named 'update', it will
            be called as ``update(x, f)`` after each nonlinear step,
            with ``x`` giving the current point, and ``f`` the current
            function value.
        inner_rtol, inner_atol, inner_callback, ...
            Parameters to pass on to the "inner" Krylov solver.

            For a full list of options, see the documentation for the
            solver you are using. By default this is `scipy.sparse.linalg.lgmres`.
            If the solver has been overridden through `method`, see the documentation
            for that solver instead.
            To use an option for that solver, prepend ``inner_`` to it.
            For example, to control the ``rtol`` argument to the solver,
            set the `inner_rtol` option here.

        outer_k : int, optional
            Size of the subspace kept across LGMRES nonlinear
            iterations.

            See `scipy.sparse.linalg.lgmres` for details.
    NrF   rF   r   r   _root_krylov_docr     s    L 	r   )rF   r   NNNN)
rF   Nr   J P>r           r   r   d   N)rF   NNNNFNNNNNNarmijoN)__doc____all__numpyr7   warningsr   	_optimizer   r   r   _minpack_pyr	   r
   	_spectralr    r   rn   ROOT_METHODSr   r:   r9   r;   r{   r}   r   r   r   r   r   rF   r   r   <module>r      s    (   I I , $ 
 HLup+ )-6AAE7t .2/359?CHL	-^C	L5	p'	R"	H"	H%	NF	r   