
    e!h@>                         d Z g dZddlZddlmZmZmZmZmZm	Z	m
Z
mZ ddlmZ ddlmZ  ej                          ZddefdZdefd	Zdefd
ZefdZefdZdefdZdefdZdefdZdefdZdefdZy)z1
Differential and pseudo-differential operators.
)
difftilbertitilberthilbertihilbertcs_diffcc_diffsc_diffss_diffshift    N)piasarraysincossinhcoshtanhiscomplexobj   )convolve)_datacopiedc                 ^   t        |t        j                        rt        |d      si |_        |j                  }t        |       }|dk(  r|S t        |      r4t        |j                  |||      dt        |j                  |||      z  z   S |dt        z  |z  }nd}t        |       }|j                  |||f      }|Jt        |      dkD  r|r|j                          |r||fd}t        j                  |||d	      }|||||f<   t!        ||       }	t        j                  |||dz  |	
      S )a*  
    Return kth derivative (or integral) of a periodic sequence x.

    If x_j and y_j are Fourier coefficients of periodic functions x
    and y, respectively, then::

      y_j = pow(sqrt(-1)*j*2*pi/period, order) * x_j
      y_0 = 0 if order is not 0.

    Parameters
    ----------
    x : array_like
        Input array.
    order : int, optional
        The order of differentiation. Default order is 1. If order is
        negative, then integration is carried out under the assumption
        that ``x_0 == 0``.
    period : float, optional
        The assumed period of the sequence. Default is ``2*pi``.

    Notes
    -----
    If ``sum(x, axis=0) = 0`` then ``diff(diff(x, k), -k) == x`` (within
    numerical accuracy).

    For odd order and even ``len(x)``, the Nyquist mode is taken zero.

    
diff_cacher                 ?         ?   c                 &    | rt        || z  |      S yNr   )pow)kordercs      c/var/www/html/diagnosisapp-backend/venv/lib/python3.12/site-packages/scipy/fftpack/_pseudo_diffs.pykernelzdiff.<locals>.kernelI   s    1Q3u~%    r   dzero_nyquistswap_real_imagoverwrite_x)
isinstance	threadinglocalhasattrr   r   r   r   realimagr   lengetpopitemr   init_convolution_kernelr   )
xr"   period_cachetmpr#   nomegar%   r,   s
             r$   r   r      s?   : &)//*v|, "F""
!*Cz
CCHHeVV4RHHeVV9- 6- - 	-bDKAAJJ%{#E}v;   !1 	 006E>?A#%{c1%KSeai)46 6r&   c                 B   t        |t        j                        rt        |d      si |_        |j                  }t        |       }t        |      r4t        |j                  |||      dt        |j                  |||      z  z   S ||dz  t        z  |z  }t        |       }|j                  ||f      }|Gt        |      dkD  r|r|j                          |r|fd}t        j                  ||d      }||||f<   t!        ||       }t        j                  ||d|      S )	a  
    Return h-Tilbert transform of a periodic sequence x.

    If x_j and y_j are Fourier coefficients of periodic functions x
    and y, respectively, then::

        y_j = sqrt(-1)*coth(j*h*2*pi/period) * x_j
        y_0 = 0

    Parameters
    ----------
    x : array_like
        The input array to transform.
    h : float
        Defines the parameter of the Tilbert transform.
    period : float, optional
        The assumed period of the sequence. Default period is ``2*pi``.

    Returns
    -------
    tilbert : ndarray
        The result of the transform.

    Notes
    -----
    If ``sum(x, axis=0) == 0`` and ``n = len(x)`` is odd, then
    ``tilbert(itilbert(x)) == x``.

    If ``2 * pi * h / period`` is approximately 10 or larger, then
    numerically ``tilbert == hilbert``
    (theoretically oo-Tilbert == Hilbert).

    For even ``len(x)``, the Nyquist mode of ``x`` is taken zero.

    tilbert_cacher   r   r   c                 *    | rdt        || z        z  S y)Nr   r   r   r!   hs     r$   r%   ztilbert.<locals>.kernel   s    4!9}$r&   r   r(   r*   )r-   r.   r/   r0   r>   r   r   r   r1   r2   r   r3   r4   r5   r   r6   r   	r7   rB   r8   r9   r:   r;   r<   r%   r,   s	            r$   r   r   U   s   H &)//*v/#%F %%
!*CCsxxFF3GCHHa889 	9 EBJAAJJ1vE}v;    	 00Fa@!uc1%KSaKPPr&   c                 B   t        |t        j                        rt        |d      si |_        |j                  }t        |       }t        |      r4t        |j                  |||      dt        |j                  |||      z  z   S ||dz  t        z  |z  }t        |       }|j                  ||f      }|Gt        |      dkD  r|r|j                          |r|fd}t        j                  ||d      }||||f<   t!        ||       }t        j                  ||d|      S )	a  
    Return inverse h-Tilbert transform of a periodic sequence x.

    If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x
    and y, respectively, then::

      y_j = -sqrt(-1)*tanh(j*h*2*pi/period) * x_j
      y_0 = 0

    For more details, see `tilbert`.

    itilbert_cacher   r   r   c                 &    | rt        || z         S yr   r@   rA   s     r$   r%   zitilbert.<locals>.kernel   s    QqS	z!r&   r   rC   r*   )r-   r.   r/   r0   rF   r   r   r   r1   r2   r   r3   r4   r5   r   r6   r   rD   s	            r$   r   r      s    &)//*v/0$&F!&&
!*CC!VV4(388Q778 	8aCF6MAAJJ!uE}v;    	 006A>!uc1%KSaKPPr&   c                    t        |t        j                        rt        |d      si |_        |j                  }t        |       }t        |      r0t        |j                  |      dt        |j                  |      z  z   S t        |       }|j                  |      }|Ct        |      dkD  r|r|j                          |rd }t        j                  ||d      }|||<   t        ||       }t        j                  ||d|      S )a  
    Return Hilbert transform of a periodic sequence x.

    If x_j and y_j are Fourier coefficients of periodic functions x
    and y, respectively, then::

      y_j = sqrt(-1)*sign(j) * x_j
      y_0 = 0

    Parameters
    ----------
    x : array_like
        The input array, should be periodic.
    _cache : dict, optional
        Dictionary that contains the kernel used to do a convolution with.

    Returns
    -------
    y : ndarray
        The transformed input.

    See Also
    --------
    scipy.signal.hilbert : Compute the analytic signal, using the Hilbert
                           transform.

    Notes
    -----
    If ``sum(x, axis=0) == 0`` then ``hilbert(ihilbert(x)) == x``.

    For even len(x), the Nyquist mode of x is taken zero.

    The sign of the returned transform does not have a factor -1 that is more
    often than not found in the definition of the Hilbert transform. Note also
    that `scipy.signal.hilbert` does have an extra -1 factor compared to this
    function.

    hilbert_cacher   r   c                     | dkD  ry| dk  ryy)Nr   r   g      g         )r!   s    r$   r%   zhilbert.<locals>.kernel   s    1uQr&   r   rC   r*   )r-   r.   r/   r0   rI   r   r   r   r1   r2   r3   r4   r5   r   r6   r   )r7   r9   r:   r;   r<   r%   r,   s          r$   r   r      s    N &)//*v/#%F %%
!*CCsxx(2&0I+IIIAAJJqME}v;  	 006A>q	c1%KSaKPPr&   c                     t        |t        j                        rt        |d      si |_        |j                  }t        | |       S )z
    Return inverse Hilbert transform of a periodic sequence x.

    If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x
    and y, respectively, then::

      y_j = -sqrt(-1)*sign(j) * x_j
      y_0 = 0

    ihilbert_cache)r-   r.   r/   r0   rM   r   )r7   r9   s     r$   r   r     s@     &)//*v/0$&F!&&Avr&   c           	      j   t        |t        j                        rt        |d      si |_        |j                  }t        |       }t        |      r6t        |j                  ||||      dt        |j                  ||||      z  z   S ||dz  t        z  |z  }|dz  t        z  |z  }t        |       }|j                  |||f      }|It        |      dkD  r|r|j                          |r||fd}t        j                  ||d      }|||||f<   t!        ||       }	t        j                  ||d|	      S )	a  
    Return (a,b)-cosh/sinh pseudo-derivative of a periodic sequence.

    If ``x_j`` and ``y_j`` are Fourier coefficients of periodic functions x
    and y, respectively, then::

      y_j = -sqrt(-1)*cosh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j
      y_0 = 0

    Parameters
    ----------
    x : array_like
        The array to take the pseudo-derivative from.
    a, b : float
        Defines the parameters of the cosh/sinh pseudo-differential
        operator.
    period : float, optional
        The period of the sequence. Default period is ``2*pi``.

    Returns
    -------
    cs_diff : ndarray
        Pseudo-derivative of periodic sequence `x`.

    Notes
    -----
    For even len(`x`), the Nyquist mode of `x` is taken as zero.

    cs_diff_cacher   r   r   c                 D    | rt        || z         t        || z        z  S yr   )r   r   r!   abs      r$   r%   zcs_diff.<locals>.kernelH  s%    QqS	z$qs)++r&   r   rC   r*   )r-   r.   r/   r0   rO   r   r   r   r1   r2   r   r3   r4   r5   r   r6   r   
r7   rR   rS   r8   r9   r:   r;   r<   r%   r,   s
             r$   r   r     s3   < &)//*v/#%F %%
!*CCsxxAvv6'#((Aq&&99: 	:aCF6MaCF6MAAJJ!AwE}v;   1 	 006A>!Awc1%KSaKPPr&   c           	      j   t        |t        j                        rt        |d      si |_        |j                  }t        |       }t        |      r6t        |j                  ||||      dt        |j                  ||||      z  z   S ||dz  t        z  |z  }|dz  t        z  |z  }t        |       }|j                  |||f      }|It        |      dkD  r|r|j                          |r||fd}t        j                  ||d      }|||||f<   t!        ||       }	t        j                  ||d|	      S )	a  
    Return (a,b)-sinh/cosh pseudo-derivative of a periodic sequence x.

    If x_j and y_j are Fourier coefficients of periodic functions x
    and y, respectively, then::

      y_j = sqrt(-1)*sinh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j
      y_0 = 0

    Parameters
    ----------
    x : array_like
        Input array.
    a,b : float
        Defines the parameters of the sinh/cosh pseudo-differential
        operator.
    period : float, optional
        The period of the sequence x. Default is 2*pi.

    Notes
    -----
    ``sc_diff(cs_diff(x,a,b),b,a) == x``
    For even ``len(x)``, the Nyquist mode of x is taken as zero.

    sc_diff_cacher   r   r   c                 B    | rt        || z        t        || z        z  S yr   )r   r   rQ   s      r$   r%   zsc_diff.<locals>.kernel  s#    AaCyac**r&   r   rC   r*   )r-   r.   r/   r0   rV   r   r   r	   r1   r2   r   r3   r4   r5   r   r6   r   rT   s
             r$   r	   r	   R  s3   4 &)//*v/#%F %%
!*CCsxxAvv6GCHHaFF;;< 	<aCF6MaCF6MAAJJ!AwE}v;   1 	 006A>!Awc1%KSaKPPr&   c           	      d   t        |t        j                        rt        |d      si |_        |j                  }t        |       }t        |      r6t        |j                  ||||      dt        |j                  ||||      z  z   S ||dz  t        z  |z  }|dz  t        z  |z  }t        |       }|j                  |||f      }|Gt        |      dkD  r|r|j                          |r||fd}t        j                  ||      }|||||f<   t!        ||       }	t        j                  |||	      S )ac  
    Return (a,b)-sinh/sinh pseudo-derivative of a periodic sequence x.

    If x_j and y_j are Fourier coefficients of periodic functions x
    and y, respectively, then::

      y_j = sinh(j*a*2*pi/period)/sinh(j*b*2*pi/period) * x_j
      y_0 = a/b * x_0

    Parameters
    ----------
    x : array_like
        The array to take the pseudo-derivative from.
    a,b
        Defines the parameters of the sinh/sinh pseudo-differential
        operator.
    period : float, optional
        The period of the sequence x. Default is ``2*pi``.

    Notes
    -----
    ``ss_diff(ss_diff(x,a,b),b,a) == x``

    ss_diff_cacher   r   r   c                 \    | rt        || z        t        || z        z  S t        |      |z  S N)r   floatrQ   s      r$   r%   zss_diff.<locals>.kernel  s.    AaCyac**8A:r&   r,   )r-   r.   r/   r0   rY   r   r   r
   r1   r2   r   r3   r4   r5   r   r6   r   rT   s
             r$   r
   r
     s/   2 &)//*v/#%F %%
!*CCsxxAvv6'#((Aq&&99: 	:aCF6MaCF6MAAJJ!AwE}v;   1 	 006:!Awc1%KS;??r&   c           	      d   t        |t        j                        rt        |d      si |_        |j                  }t        |       }t        |      r6t        |j                  ||||      dt        |j                  ||||      z  z   S ||dz  t        z  |z  }|dz  t        z  |z  }t        |       }|j                  |||f      }|Gt        |      dkD  r|r|j                          |r||fd}t        j                  ||      }|||||f<   t!        ||       }	t        j                  |||	      S )a  
    Return (a,b)-cosh/cosh pseudo-derivative of a periodic sequence.

    If x_j and y_j are Fourier coefficients of periodic functions x
    and y, respectively, then::

      y_j = cosh(j*a*2*pi/period)/cosh(j*b*2*pi/period) * x_j

    Parameters
    ----------
    x : array_like
        The array to take the pseudo-derivative from.
    a,b : float
        Defines the parameters of the sinh/sinh pseudo-differential
        operator.
    period : float, optional
        The period of the sequence x. Default is ``2*pi``.

    Returns
    -------
    cc_diff : ndarray
        Pseudo-derivative of periodic sequence `x`.

    Notes
    -----
    ``cc_diff(cc_diff(x,a,b),b,a) == x``

    cc_diff_cacher   r   r   c                 <    t        || z        t        || z        z  S r[   )r   rQ   s      r$   r%   zcc_diff.<locals>.kernel  s    !9T!A#Y&&r&   r]   )r-   r.   r/   r0   r_   r   r   r   r1   r2   r   r3   r4   r5   r   r6   r   rT   s
             r$   r   r     s-   : &)//*v/#%F %%
!*CCsxxAvv6GCHHaFF;;< 	<aCF6MaCF6MAAJJ!AwE}v;   1 	'006:!Awc1%KS;??r&   c                    t        |t        j                        rt        |d      si |_        |j                  }t        |       }t        |      r4t        |j                  |||      dt        |j                  |||      z  z   S ||dz  t        z  |z  }t        |       }|j                  ||f      }|it        |      dkD  r|r|j                          |r|fd}|fd}t        j                  ||dd      }	t        j                  ||d	d      }
|	|
f|||f<   n|\  }	}
t!        ||       }t        j"                  ||	|
|
      S )a  
    Shift periodic sequence x by a: y(u) = x(u+a).

    If x_j and y_j are Fourier coefficients of periodic functions x
    and y, respectively, then::

          y_j = exp(j*a*2*pi/period*sqrt(-1)) * x_f

    Parameters
    ----------
    x : array_like
        The array to take the pseudo-derivative from.
    a : float
        Defines the parameters of the sinh/sinh pseudo-differential
    period : float, optional
        The period of the sequences x and y. Default period is ``2*pi``.
    shift_cacher   r   r   c                     t        || z        S r[   )r   r!   rR   s     r$   kernel_realzshift.<locals>.kernel_real      qs8Or&   c                     t        || z        S r[   )r   rd   s     r$   kernel_imagzshift.<locals>.kernel_imag  rf   r&   r   r'   r   r]   )r-   r.   r/   r0   rb   r   r   r   r1   r2   r   r3   r4   r5   r   r6   r   
convolve_z)r7   rR   r8   r9   r:   r;   r<   re   rh   
omega_real
omega_imagr,   s               r$   r   r     sX   $ &)//*v}-!#F##
!*CCSXXq&&1BHHa:) 5) ) 	)aCF6MAAJJ!uE}v;    	  	55aaCDF
55aaCDF
":-!u %
:c1%Ks:j+68 8r&   )__doc____all__r.   numpyr   r   r   r   r   r   r   r    r   scipy.fft._pocketfft.helperr   r/   r9   r   r   r   r   r   r   r	   r
   r   r   rK   r&   r$   <module>rq      s   

  G G G  3 
	 $v <6~ f BQJ V &QR  ?QD  $ ! 8Qv ! 4Qn ! 3@l ! 5@p F 28r&   